New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation.
نویسندگان
چکیده
We propose a new generation of materials to maximize reversible H2 storage at room temperature and modest pressures (<20 bars). We test these materials using grand canonical Monte Carlo simulations with a first-principles-derived force field and find that the Li pillared graphene sheet system can take up 6.5 mass% of H2 (a density of 62.9 kg/m(3) at 20 bars and room temperature. This satisfies the DOE (Department of Energy) target of hydrogen-storage materials for transportation. We also suggest ways to synthesize these systems. In addition we show that Li-doped pillared single-wall nanotubes can lead to a hydrogen-storage capacity of 6.0 mass% and 61.7 kg/m(3) at 50 bars and room temperature storage, which is close to the DOE target.
منابع مشابه
Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.
Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capaciti...
متن کاملHydrogen storage in pillared Li-dispersed boron carbide nanotubes
Ab initio density-functional theory study suggests that pillared Li-dispersed boron carbide nanotubes is capable of storing hydrogen with a mass density higher than 6.0 weight% and a volumetric density higher than 45 g/L. The boron substitution in carbon nanotube greatly enhances the binding energy of Li atom to the nanotube, and this binding energy (~ 2.7 eV) is greater than the cohesive energ...
متن کاملUltrathin nickel hydroxide nanosheet arrays grafted biomass-derived honeycomb-like porous carbon with improved electrochemical performance as a supercapacitive material
Three-dimensional hierarchical honeycomb-like activated porous carbon pillared ultrathin Ni(OH)2 nanosheets (Ni(OH)2 NSs@HAPC) for use as supercapacitor materials were facilely synthesized. With an aid of pine cone flowers as a biomass source, HAPC conducting scaffolds were prepared by the alkali treatment and pyrolysis methods under an inert gas atmosphere. Subsequently, the Ni(OH)2 NSs were s...
متن کاملHydrogen Storage Properties of B- and N-Doped Microporous Carbon
A Band N-doped microporous carbon has been synthesized via a substitution reaction. The obtained carbon exhibited much higher surface area than the previously reported Band N-doped carbon. The hydrogen storage measurements indicated that the Band N-doped microporous carbon had a 53% higher storage capacity than the carbon materials with similar surface areas. Furthermore, hydrogen storage via s...
متن کاملIncreasing the hydrogen storage capacity of single-walled carbon nanotube (SWNT) through facile impregnation by TiO2, ZrO2 and ZnO nanocatalysts
Various nanocomposites of TiO2, ZnO and ZrO2 decorated single wall Carbon nanotubes (SWNTs) were fabricated by facile and template free continuous ultrasonication/stirring of virgin metal oxide nanopowders and SWNTs in ethanol under UV-light illumination. The TEM micrographs showed that nanoparticles (NPs) were uniformly dispersed and bonded on the surface of SWNTs. The results of XRD as well a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 92 16 شماره
صفحات -
تاریخ انتشار 2004